
Fast and Simple Physics using
Sequential Impulses

Erin Catto
Crystal Dynamics

Physics Engine Checklist

 Collision and contact

 Friction: static and dynamic

 Stacking

 Joints

 Fast, simple, and robust

Box2D Demo

 It’s got collision

 It’s got friction

 It’s got stacking

 It’s got joints

 Check the code, it’s simple!

Fast and Simple Physics

 Penalty method?
 Nope

 Linear complementarity (LCP)?
 Nope

 Joint coordinates (Featherstone)?
 Nope

 Particles (Jakobsen)?
 Nope

 Impulses?
 Bingo!

Why Impulses?

 Most people don’t hate impulses

 The math is almost understandable

 Intuition often works

 Impulses can be robust

m
 =

P
v

m

P

Making Impulses not Suck

 Impulses are good at making things bounce.

 Many attempts to use impulses leads to
bouncy simulations (aka jitter).

 Forget static friction.

 Forget stacking.

Impulses without the Bounce

 Forget bounces for a moment.

 Let’s concentrate on keeping things still.

 It’s always easy to add back in the bounce.

The 5 Step Program

 Accept penetration

 Remember the past

 Apply impulses early and often

 Pursue the true impulse

 Update position last

(for taking the jitter out of impulses)

Penetration

 Performance

 Simplicity

 Coherence

 Game logic

 Fewer cracks

Algorithm Overview

 Compute contact points

 Apply forces (gravity)

 Apply impulses

 Update position

 Loop

Contact Points

 Position, normal, and penetration

 Box-box using the SAT

 Find the axis of minimum penetration

 Find the incident face on the other box

 Clip

Box-Box SAT

 First find the separating
axis with the minimum
penetration.

 In 2D the separating axis is
a face normal.



n

Box-Box Clipping Setup

 Identify reference face

 Identify incident face n

incident

reference

Box-Box Clipping

 Clip incident face
against reference face
side planes (but not
the reference face).

 Consider clip points
with positive
penetration.

n

clipping planes

Feature Flip-Flop

 Which normal is the
separating axis?

 Apply weightings to
prefer one axis over
another.

 Improved coherence.

1n

2n

Apply Forces

m

I I

=

+  =

v F

ω ω ω T

1

2 1

1

2 1

t m

t I

−

−

= + 

= + 

v v F

ω ω T

Newton’s Law

Ignore gyroscopic term for
improved stability

Use Euler’s rule

Impulses

 Impulses are applied at each contact point.

 Normal impulses to prevent penetration.

 Tangent impulses to impose friction.

0n

t n

P

P P





nP n

tPt

Computing the Impulse

1

2

n
P

−P

1r

2r

Linear Momentum

1 1 1

1

1 1 1 1

2 2 2

1

2 2 2 2

/

/

m

I

m

I

−

−

= −

= − 

= +

= + 

v v P

ω ω r P

v v P

ω ω r P

nP=P n

We know the direction of
the normal impulse. We
only need it’s magnitude.

The normal impulse
causes an instant
change in velocity.

Relative Velocity

2 2 2 1 1 1 = +  − − v v ω r v ω r

n

1

2

1r

2r

nv =  v n

Along Normal:

The Normal Impulse

Want: 0nv =

max ,0n

n

P
k

 − 
=  

 

v n
Get:

() ()1 1

1 1 1 2 2 2

1 2

1 1
nk I I

m m

− − = + +   +    r n r r n r n

2 2 2 1 1 1 = +  − − v v ω r v ω r

Fine Print:

0nP 

Bias Impulse

 Give the normal impulse some extra oomph.

 Proportional to the penetration.

 Allow some slop.

 Be gentle.

Bias Velocity



n

Slop: slop

Bias Factor:  0.1,0.3 

Bias velocity:

()max 0,bias slopv
t


 = −



slop

Bias Impulse

max ,0bias
n

n

v
P

k

 −  +
=  

 

v n

max ,0n

n

P
k

 − 
=  

 

v n

Becomes:

With bias velocity, this:

Friction Impulse

Want: 0tv =

clamp(, ,)t n n

t

P P P
k

 
− 

= −
v t

Get:

() ()1 1

1 1 1 2 2 2

1 2

1 1
tk I I

m m

− − = + +   +    r t r r t r t

Fine Print:

n t nP P P −  

Tangent Velocity: tv =  v t

Sequential Impulses

 Apply an impulse at each contact point.

 Continue applying impulses for several
iterations.

 Terminate after:

 - fixed number of iterations

 - impulses become small

Naïve Impulses

velocity

1P
2P

Each impulse is computed
independently, leading to
jitter.

velocity

Where Did We Go Wrong?

 Each contact point forgets its impulse history.

 Each contact point requires that every
impulse be positive.

 There is no way to recover from a bad
impulse.

Accumulated Impulses

velocity

1P 2P 1P

Each impulse adds to
the total. Increments
can be negative.

2P

The True Impulse

 Each impulse adds to an accumulated
impulse for each contact point.

 The accumulated impulse approaches the
true impulse (hopefully).

 True impulse: an exact global solution.

Accumulated Impulse

 Clamp the accumulated impulse, not the
incremental impulses.

nP

Accumulated impulses:

tP

Correct Clamping

()max ,0

n

n n n

n n

temp P

P P P

P P temp



 



=

= +

= −

Normal Clamping:

()clamp , ,

t

t t t n n

t t

temp P

P P P P P

P P temp

 



   



=

= + −

= −

Friction Clamping:

Position Update

 Use the new velocities to integrate the
positions.

 The time step is complete.

Extras

 Coherence

 Feature-based contact points

 Joints

 Engine layout

 Loose ends

 3D Issues

Coherence

 Apply old accumulated impulses at the
beginning of the step.

 Less iterations and greater stability.

 We need a way to match old and new
contacts.

Feature-Based Contact Points

 Each contact point is the result of clipping.

 It is the junction of two different edges.

 An edge may come from either box.

 Store the two edge numbers with each
contact point – this is the Contact ID.

Contact Point IDs

1c

box 1 edge 2

box 2 edge 3

2c

box 2 edge 3

box 2 edge 4

1e

4e

3e

2e

n

1

2

1c
2c

Joints

 Specify (constrain) part of the motion.

 Compute the impulse necessary to achieve
the constraint.

 Use an accumulator to pursue the true
impulse.

 Bias impulse to prevent separation.

Revolute Joint

 Two bodies share a
common point.

 They rotate freely
about the point.

Revolute Joint

 The joint knows the
local anchor point for
both bodies.

1r

2r

11

2

Relative Velocity

 The relative velocity of the anchor points is
zero.

2 2 2 1 1 1 0 = +  − −  =v v ω r v ω r

 An impulse is applied to the two bodies.

P

Linear Momentum

 Apply linear momentum to the relative
velocity to get:

K = −P v

 Fine Print:

1 1

1 1 1 2 2 2

1 2

1 1
K I I

m m

− − 
= + − − 
 

1 r r r r

 Tilde (~) for the cross-product matrix.

K Matrix

 2-by-2 matrix in 2D, 3-by-3 in 3D.

 Symmetric positive definite.

 Think of K as the inverse mass matrix of the
constraint.

1

cM K −=

Bias Impulse

 The error is the separation between the
anchor points

2 2 1 1 = + − −p x r x r

 Center of mass: x

 Bias velocity and impulse:

bias

bias

t

K


= − 



= − +

v p

P v v

Engine Layout

 The World class contains all bodies, contacts,
and joints.

 Contacts are maintained by the Arbiter class.

Arbiter

 An arbiter exists for every touching pair of
boxes.

 Provides coherence.

 Matches new and old contact points using
the Contact ID.

 Persistence of accumulated impulses.

Arbiters

n

1

2

1c
2c

Arbiter

Collision Coherence

 Use the arbiter to store the separating axis.

 Improve performance at the cost of memory.

 Use with broad-phase.

More on Arbiters

 Arbiters are stored in a set according to the
ordered body pointers.

 Use time-stamping to remove stale arbiters.

 Joints are permanent arbiters.

 Arbiters can be used for game logic.

Loose Ends

 Ground is represented with bodies whose
inverse mass is zero.

 Contact mass can be computed as a pre-step.

 Bias impulses shouldn’t affect the velocity
state (TODO).

3D Issues

 Friction requires two axes.

 Align the axes with velocity if it is non-zero.

 Identify a contact patch (manifold) and apply
friction at the center.

 This requires a twist friction.

 Big CPU savings.

Questions?

 http://www.gphysics.com

 erincatto at that domain

 Download the code there.

 Buy Tomb Raider Legend!

http://www.gphysics.com/

References

 Physics-Based Animation by Kenny Erleben et al.

 Real-Time Collision Detection by Christer Ericson.

 Collision Detection in Interactive 3D Environments by Gino van
den Bergen.

 Fast Contact Reduction for Dynamics Simulation by Adam
Moravanszky and Pierre Terdiman in Game Programming Gems
4.

