Fast and Simple Physics using Sequential Impulses

Erin Catto
Crystal Dynamics
Physics Engine Checklist

- Collision and contact
- Friction: static and dynamic
- Stacking
- Joints
- Fast, simple, and robust
Box2D Demo

- It’s got collision
- It’s got friction
- It’s got stacking
- It’s got joints
- Check the code, it’s simple!
Fast and Simple Physics

- Penalty method?
 Nope
- Linear complementarity (LCP)?
 Nope
- Joint coordinates (Featherstone)?
 Nope
- Particles (Jakobsen)?
 Nope
- Impulses?
 Bingo!
Why Impulses?

- Most people don’t hate impulses
- The math is almost understandable
- Intuition often works
- Impulses can be robust

\[\Delta v = \frac{P}{m} \]
Making Impulses not Suck

- Impulses are good at making things bounce.
- Many attempts to use impulses leads to bouncy simulations (aka jitter).
- Forget static friction.
- Forget stacking.
Impulses without the Bounce

- Forget bounces for a moment.
- Let’s concentrate on keeping things still.
- It’s always easy to add back in the bounce.
The 5 Step Program

(for taking the jitter out of impulses)

- Accept penetration
- Remember the past
- Apply impulses early and often
- Pursue the true impulse
- Update position last
Penetration

- Performance
- Simplicity
- Coherence
- Game logic
- Fewer cracks
Algorithm Overview

- Compute contact points
- Apply forces (gravity)
- Apply impulses
- Update position
- Loop
Contact Points

- Position, normal, and penetration
- Box-box using the SAT
- Find the axis of minimum penetration
- Find the incident face on the other box
- Clip
Box-Box SAT

- First find the separating axis with the minimum penetration.
- In 2D the separating axis is a face normal.
Box-Box Clipping Setup

- Identify reference face
- Identify incident face
Box-Box Clipping

- Clip incident face against reference face side planes (but not the reference face).
- Consider clip points with positive penetration.
Feature Flip-Flop

- Which normal is the separating axis?
- Apply weightings to prefer one axis over another.
- Improved coherence.
Apply Forces

Newton’s Law

\[m \dot{v} = F \]

\[I \dot{\omega} + \omega \times I \omega = T \]

Ignore gyroscopic term for improved stability

Use Euler’s rule

\[v_2 = v_1 + \Delta t \, m^{-1}F \]

\[\omega_2 = \omega_1 + \Delta t \, I^{-1}T \]
Impulses

- Impulses are applied at each contact point.
- Normal impulses to prevent penetration.
- Tangent impulses to impose friction.

\[P_n \geq 0 \]
\[|P_t| \leq \mu P_n \]
Computing the Impulse
Linear Momentum

The normal impulse causes an instant change in velocity.

We know the direction of the normal impulse. We only need its magnitude.

\[\mathbf{v}_1 = \mathbf{v}_1 - \mathbf{P} / m_1 \]
\[\mathbf{\omega}_1 = \mathbf{\omega}_1 - I_1^{-1} \mathbf{r}_1 \times \mathbf{P} \]
\[\mathbf{v}_2 = \mathbf{v}_2 + \mathbf{P} / m_2 \]
\[\mathbf{\omega}_2 = \mathbf{\omega}_2 + I_2^{-1} \mathbf{r}_2 \times \mathbf{P} \]

\[\mathbf{P} = P_n \mathbf{n} \]
Relative Velocity

\[\Delta v = v_2 + \omega_2 \times r_2 - v_1 - \omega_1 \times r_1 \]

Along Normal:

\[v_n = \Delta v \cdot n \]
The Normal Impulse

Want: \(v_n = 0 \quad P_n \geq 0 \)

Get: \[P_n = \max \left(\frac{-\Delta \bar{V} \cdot \mathbf{n}}{k_n}, 0 \right) \]

Fine Print:

\[\Delta \bar{V} = \bar{v}_2 + \bar{\omega}_2 \times \mathbf{r}_2 - \bar{v}_1 - \bar{\omega}_1 \times \mathbf{r}_1 \]

\[k_n = \frac{1}{m_1} + \frac{1}{m_2} + \left[I_1^{-1} (\mathbf{r}_1 \times \mathbf{n}) \times \mathbf{r}_1 + I_2^{-1} (\mathbf{r}_2 \times \mathbf{n}) \times \mathbf{r}_2 \right] \cdot \mathbf{n} \]
Bias Impulse

- Give the normal impulse some extra oomph.
- Proportional to the penetration.
- Allow some slop.
- Be gentle.
Bias Velocity

Slop: \(\delta_{slop} \)

Bias Factor: \(\beta \approx [0.1, 0.3] \)

Bias velocity:

\[
v_{bias} = \frac{\beta}{\Delta t} \max \left(0, \delta - \delta_{slop} \right)
\]
Bias Impulse

With bias velocity, this:

\[P_n = \max \left(\frac{-\Delta \bar{v} \cdot \mathbf{n}}{k_n}, 0 \right) \]

Becomes:

\[P_n = \max \left(\frac{-\Delta \bar{v} \cdot \mathbf{n} + v_{bias}}{k_n}, 0 \right) \]
Friction Impulse

Tangent Velocity: \(v_t = \Delta v \cdot t \)

Want: \(v_t = 0 \quad -\mu P_n \leq P_t \leq \mu P_n \)

Get: \(P_t = \text{clamp}(\frac{-\Delta \vec{V} \cdot t}{k_t}, -\mu P_n, \mu P_n) \)

Fine Print:

\[
k_t = \frac{1}{m_1} + \frac{1}{m_2} + \left[I_1^{-1} (r_1 \times t) \times r_1 + I_2^{-1} (r_2 \times t) \times r_2 \right] \cdot t
\]
Sequential Impulses

- Apply an impulse at each contact point.
- Continue applying impulses for several iterations.
- Terminate after:
 - fixed number of iterations
 - impulses become small
Naïve Impulses

Each impulse is computed independently, leading to jitter.
Where Did We Go Wrong?

- Each contact point forgets its impulse history.
- Each contact point requires that every impulse be positive.
- There is no way to recover from a bad impulse.
Accumulated Impulses

Each impulse adds to the total. Increments can be negative.
The True Impulse

- Each impulse adds to an accumulated impulse for each contact point.
- The accumulated impulse approaches the true impulse (hopefully).
- True impulse: an exact global solution.
Accumulated Impulse

Clamp the accumulated impulse, not the incremental impulses.

Accumulated impulses:

\[P_{\Sigma n} \quad P_{\Sigma t} \]
Correct Clamping

Normal Clamping:

\[
\begin{align*}
temp &= P_{\Sigma n} \\
P_{\Sigma n} &= \max \left(P_{\Sigma n} + P_n, 0 \right) \\
P_n &= P_{\Sigma n} - temp
\end{align*}
\]

Friction Clamping:

\[
\begin{align*}
temp &= P_{\Sigma t} \\
P_{\Sigma t} &= \text{clamp}\left(P_{\Sigma t} + P_t, -\mu P_{\Sigma n}, \mu P_{\Sigma n} \right) \\
P_t &= P_{\Sigma t} - temp
\end{align*}
\]
Position Update

- Use the new velocities to integrate the positions.
- The time step is complete.
Extras

- Coherence
- Feature-based contact points
- Joints
- Engine layout
- Loose ends
- 3D Issues
Coherence

- Apply old accumulated impulses at the beginning of the step.
- Less iterations and greater stability.
- We need a way to match old and new contacts.
Feature-Based Contact Points

- Each contact point is the result of clipping.
- It is the junction of two different edges.
- An edge may come from either box.
- Store the two edge numbers with each contact point – this is the Contact ID.
Contact Point IDs

e_1
e_2
e_3
e_4
c_1
c_2

box 1 edge 2
box 2 edge 3
box 2 edge 3
box 2 edge 4
Joints

- Specify (constrain) part of the motion.
- Compute the impulse necessary to achieve the constraint.
- Use an accumulator to pursue the true impulse.
- Bias impulse to prevent separation.
Revolute Joint

- Two bodies share a common point.
- They rotate freely about the point.
Revolute Joint

The joint knows the local anchor point for both bodies.
Relative Velocity

- The relative velocity of the anchor points is zero.

\[\Delta v = v_2 + \omega_2 \times r_2 - v_1 - \omega_1 \times r_1 = 0 \]

- An impulse is applied to the two bodies.
Linear Momentum

- Apply linear momentum to the relative velocity to get:

\[KP = -\Delta \vec{v} \]

- Fine Print:

\[K = \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \mathbf{1} - \mathbf{\tilde{r}}_1 I_1^{-1} \mathbf{\tilde{r}}_1 - \mathbf{\tilde{r}}_2 I_2^{-1} \mathbf{\tilde{r}}_2 \]

- Tilde (~) for the cross-product matrix.
K Matrix

- 2-by-2 matrix in 2D, 3-by-3 in 3D.
- Symmetric positive definite.
- Think of K as the inverse mass matrix of the constraint.

\[M_c = K^{-1} \]
Bias Impulse

- The error is the separation between the anchor points

\[\Delta p = x_2 + r_2 - x_1 - r_1 \]

- Center of mass: \(x \)

- Bias velocity and impulse:

\[v_{bias} = -\frac{\beta}{\Delta t} \Delta p \]

\[KP = -\Delta \bar{v} + v_{bias} \]
Engine Layout

- The *World* class contains all bodies, contacts, and joints.
- Contacts are maintained by the *Arbiter* class.
Arbiter

- An arbiter exists for every touching pair of boxes.
- Provides coherence.
- Matches new and old contact points using the Contact ID.
- Persistence of accumulated impulses.
Arbiters
Collision Coherence

- Use the arbiter to store the separating axis.
- Improve performance at the cost of memory.
- Use with broad-phase.
More on Arbiters

- Arbiters are stored in a set according to the ordered body pointers.
- Use time-stamping to remove stale arbiters.
- Joints are permanent arbiters.
- Arbiters can be used for game logic.
Loose Ends

- Ground is represented with bodies whose inverse mass is zero.
- Contact mass can be computed as a pre-step.
- Bias impulses shouldn’t affect the velocity state (TODO).
3D Issues

- Friction requires two axes.
- Align the axes with velocity if it is non-zero.
- Identify a contact patch (manifold) and apply friction at the center.
- This requires a twist friction.
- Big CPU savings.
Questions?

- [Link](http://www.gphysics.com)
- erincatto@that.domain
- Download the code there.
- Buy Tomb Raider Legend!
References

- Physics-Based Animation by Kenny Erleben et al.
- Real-Time Collision Detection by Christer Ericson.
- Collision Detection in Interactive 3D Environments by Gino van den Bergen.
- Fast Contact Reduction for Dynamics Simulation by Adam Moravanszky and Pierre Terdiman in Game Programming Gems 4.