Modeling and Solving Constraints

Erin Catto
Blizzard Entertainment
Basic Idea

- Constraints are used to simulate joints, contact, and collision.
- We need to *solve* the constraints to stack boxes and to keep ragdoll limbs attached.
- Constraint solvers do this by calculating impulse or forces, and applying them to the constrained bodies.
Overview

- Constraint Formulas
 - Jacobians, Lagrange Multipliers
- Modeling Constraints
 - Joints, Motors, Contact
- Building a Constraint Solver
 - Sequential Impulses
Constraint Types

Contact and Friction
Constraint Types

Ragdolls
Constraint Types

Particles and Cloth
Show Me the Demo!
Bead on a 2D Rigid Wire

Implicit Curve Equation: \(C(x, y) = 0 \)

This is the position constraint.
How does it move?

The normal vector is perpendicular to the velocity.

\[\text{dot}(n, v) = 0 \]
Enter The Calculus

Position Constraint:

\[C(x) = 0 \]

If \(C \) is zero, then its time derivative is zero.

Velocity Constraint: \(\dot{C} = 0 \)
Velocity Constraint

\[\dot{C} = 0 \]

- Velocity constraints define the allowed motion.
- Next we’ll show that velocity constraints depend linearly on velocity.
Due to the chain rule the velocity constraint has a special structure:

$$\dot{C} = Jv$$

J is a row vector called the *Jacobian*. J depends on position.

The velocity constraint is *linear*.
The Jacobian

The Jacobian is perpendicular to the velocity.

\[\dot{C} = Jv = 0 \]
Assume the wire is frictionless.

What is the force between the wire and the bead?
Lagrange Multiplier

Intuitively the constraint force F_c is parallel to the normal vector.

Direction *known*.
Magnitude *unknown*.
implies

$$ F_c = J^T \lambda $$
Lagrange Multiplier

- The Lagrange Multiplier (lambda) is the constraint force signed magnitude.
- We use a constraint solver to compute lambda.
- More on this later.
Jacobian as a CoordinateTransform

- Similar to a rotation matrix.
- Except it is missing a couple rows.
- So it projects some dimensions to zero.
- The transpose is missing some columns, so some dimensions get added.
Velocity Transform

\[\dot{C} = Jv \]

Cartesian Space Velocity

Constraint Space Velocity
Force Transform

\[\lambda \xrightarrow{J^T} F_c \]

Constraint Space Force

Cartesian Space Force

\[F_c = J^T \lambda \]
Refresher: Work and Power

Work = Force times Distance

Work has units of Energy (Joules)

Power = Force times Velocity (Watts)

\[P = \text{dot} (F, V) \]
Principle of Virtual Work

Principle: constraint forces do no work.

We can ensure this by using:
\[F_c = J^T \lambda \]

Proof (compute the power):

\[P_c = F_c^T v = \left(J^T \lambda \right)^T v = \lambda Jv = 0 \]

The power is zero, so the constraint does no work.
Constraint Quantities

<table>
<thead>
<tr>
<th>Constraint Type</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Constraint</td>
<td>C</td>
</tr>
<tr>
<td>Velocity Constraint</td>
<td>\dot{C}</td>
</tr>
<tr>
<td>Jacobian</td>
<td>J</td>
</tr>
<tr>
<td>Lagrange Multiplier</td>
<td>λ</td>
</tr>
</tbody>
</table>
Why all the Painful Abstraction?

- We want to put all constraints into a common form for the solver.
- This allows us to efficiently try different solution techniques.
Addendum: Modeling Time Dependence

- Some constraints, like motors, have prescribed motion.
- This is represented by time dependence.

Position: \[C(x, t) = 0 \]

Velocity: \[\dot{C} = Jv + b(t) = 0 \]
Example: Distance Constraint

Position: \[C = \|\mathbf{x}\| - L \]

Velocity: \[\dot{C} = \frac{\mathbf{x}^T}{\|\mathbf{x}\|} \mathbf{v} \]

Jacobian:

Velocity Bias: \[b = 0 \]

\[\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \]

\[\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \]

\(\lambda \) is the tension
Gory Details

\[
\frac{dC}{dt} = \frac{d}{dt} \left(\sqrt{x^2 + y^2} - L \right)
\]

\[
= \frac{1}{2\sqrt{x^2 + y^2}} \frac{d}{dt} \left(x^2 + y^2 \right) - \frac{dL}{dt}
\]

\[
= \frac{2 \left(xv_x + yv_y \right)}{2\sqrt{x^2 + y^2}} - 0
\]

\[
= \frac{1}{\sqrt{x^2 + y^2}} \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \frac{\mathbf{x}^T}{\|\mathbf{x}\|} \mathbf{v}
\]
Computing the Jacobian

- At first, it is not easy to compute the Jacobian.
- It gets easier with practice.
- If you can define a position constraint, you can find its Jacobian.
- Here’s how …
A Recipe for J

- Use geometry to write C.
- Differentiate C with respect to time.
- Isolate v.
- *Identify* J and b by inspection.

\[\dot{C} = Jv + b \]
Constraint Potpourri

- Joints
- Motors
- Contact
- Restitution
- Friction
Joint: Distance Constraint

\[T_c \lambda = F_J \]

\[T_m = F_g \]

\[x = J^T \]

\[F_c = J^T \lambda \]

\[F_a = mg \]

\[J = \frac{x^T}{\|x\|} \]
Motors

A motor is a constraint with limited force (torque).

Example

\[C = \theta - \sin t \]

\[-10 \leq \lambda \leq 10 \]

A Wheel

Note: this constraint does work.
Velocity Only Motors

Example

\[\dot{C} = \omega - 2 \]

\[-5 \leq \lambda \leq 5 \]

Usage: A wheel that spins at a constant rate. We don’t care about the angle.
Inequality Constraints

- So far we’ve looked at *equality* constraints (because they are simpler).
- Inequality constraints are needed for contact and joint limits.
- We put all inequality position constraints into this form:

\[C(x, t) \geq 0 \]
Inequality Constraints

The corresponding velocity constraint:

If $C \leq 0$

enforce: $\dot{C} \geq 0$

Else

skip constraint
Inequality Constraints

Force Limits: \[0 \leq \lambda \leq \infty \]

Inequality constraints don’t suck.
Contact Constraint

- Non-penetration.
- Restitution: bounce
- Friction: sliding, sticking, and rolling
Non-Penetration Constraint

\[C = \delta \]

(separation)

\[\delta \]

body 1

body 2

p

n
Non-Penetration Constraint

\[
\dot{C} = (v_{p2} - v_{p1}) \cdot n
\]

\[
= \left[v_2 + \omega_2 \times (p - x_2) - v_1 - \omega_1 \times (p - x_1) \right] \cdot n
\]

\[
= \begin{bmatrix}
-n \\
-(p - x_1) \times n \\
n \\
(p - x_2) \times n
\end{bmatrix}^T
\begin{bmatrix}
v_1 \\
\omega_1 \\
v_2 \\
\omega_2
\end{bmatrix}
\]

\[
J
\]

Handy Identities:

\[
A \cdot (B \times C) = \]

\[
C \cdot (A \times B) = \]

\[
B \cdot (C \times A)
\]
Restitution

Relative normal velocity

\[v_n = \nabla \cdot (v_{p2} - v_{p1}) \cdot n \]

Velocity Reflection

\[v_n^+ \geq -e v_n^- \]

Adding bounce as a velocity bias

\[\dot{C} = v_n^+ + e v_n^- \geq 0 \quad \rightarrow \quad b = e v_n^- \]
Friction Constraint

Friction is like a velocity-only motor.

The target velocity is zero.

\[\dot{C} = \mathbf{v}_p \cdot \mathbf{t} \]

\[= \left[\mathbf{v} + \omega \times (\mathbf{p} - \mathbf{x}) \right] \cdot \mathbf{t} \]

\[= \left[\begin{bmatrix} \mathbf{t} \\ (\mathbf{p} - \mathbf{x}) \times \mathbf{t} \end{bmatrix}^T \right] \left[\begin{bmatrix} \mathbf{v} \\ \omega \end{bmatrix} \right] \]

\[J \]
Friction Constraint

The friction force is limited by the normal force.

Coulomb’s Law: \[|\lambda_t| \leq \mu \lambda_n \]

In 2D: \[-\mu \lambda_n \leq \lambda_t \leq \mu \lambda_n \]

3D is a bit more complicated. See the references.
Constraints Solvers

- We have a bunch of constraints.
- We have unknown constraint forces.
- We need to solve for these constraint forces.
- There are many ways different ways to compute constraint forces.
Constraint Solver Types

- Global Solvers (slow)
- Iterative Solvers (fast)
Solving a Chain

Global: solve for \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) simultaneously.

Iterative:
while !done
 solve for \(\lambda_1 \)
 solve for \(\lambda_2 \)
 solve for \(\lambda_3 \)
Sequential Impulses (SI)

- An iterative solver.
- SI applies impulses at each constraint to correct the velocity error.
- SI is fast and stable.
- Converges to a global solution.
Why Impulses?

- Easier to deal with friction and collision.
- Lets us work with velocity rather than acceleration.
- Given the time step, impulse and force are interchangeable.

\[\mathbf{P} = h \mathbf{F} \]
Sequential Impulses

<table>
<thead>
<tr>
<th>Step1:</th>
<th>Integrate applied forces, yielding tentative velocities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step2:</td>
<td>Apply impulses sequentially for all constraints, to correct the velocity errors.</td>
</tr>
<tr>
<td>Step3:</td>
<td>Use the new velocities to update the positions.</td>
</tr>
</tbody>
</table>
Step 1: Newton’s Law

We separate \textit{applied} forces and \textit{constraint} forces.

\[M \ddot{v} = F_a + F_c \]

\[\text{mass matrix} \]
Step 1: Mass Matrix

Particle

$$M = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix}$$

Rigid Body

$$M = \begin{bmatrix} mE & 0 \\ 0 & I \end{bmatrix}$$

May involve multiple particles/bodies.
Step 1: Applied Forces

- Applied forces are computed according to some law.
- Gravity: $F = mg$
- Spring: $F = -kx$
- Air resistance: $F = -cv^2$
Step 1: Integrate Applied Forces

Euler’s Method for all bodies.

$$\bar{v}_2 = \bar{v}_1 + hM^{-1}F_a$$

This new velocity tends to violate the velocity constraints.
Step 2:
Constraint Impulse

The constraint impulse is just the time step times the constraint force.

\[P_c = hF_c \]
Step 2: Impulse-Momentum

Newton’s Law for impulses:

\[M \Delta v = P_c \]

In other words:

\[v_2 = \bar{v}_2 + M^{-1}P_c \]
Step 2: Computing Lambda

For each constraint, solve these for λ:

Newton’s Law: \[\mathbf{v}_2 = \overline{\mathbf{v}}_2 + \mathbf{M}^{-1}\mathbf{P}_c \]

Virtual Work: \[\mathbf{P}_c = \mathbf{J}^T\lambda \]

Velocity Constraint: \[\mathbf{J}\mathbf{v}_2 + b = 0 \]

Note: this usually involves one or two bodies.
Step 2: Impulse Solution

\[\lambda = -m_C \left(J\bar{v}_2 + b \right) \]

\[m_C = \frac{1}{JM^{-1}J^T} \]

The scalar \(m_C \) is the effective mass seen by the constraint impulse:

\[m_C \Delta \dot{C} = \lambda \]
Step 2: Velocity Update

Now that we solved for lambda, we can use it to update the velocity.

\[P_c = J^T \lambda \]
\[v_2 = \bar{v}_2 + M^{-1}P_c \]

Remember: this usually involves one or two bodies.
Step 2: Iteration

- Loop over all constraints until you are done:
 - Fixed number of iterations.
 - Corrective impulses become small.
 - Velocity errors become small.
Step 3: Integrate Positions

Use the **new** velocity to integrate all body positions (and orientations):

\[\mathbf{x}_2 = \mathbf{x}_1 + h \mathbf{v}_2 \]

This is the symplectic Euler integrator.
Extensions to Step 2

- Handle position drift.
- Handle force limits.
- Handle inequality constraints.
- Warm starting.
Handling Position Drift

Velocity constraints are not obeyed precisely.

Joints will fall apart.
Baumgarte Stabilization

Feed the position error back into the velocity constraint.

New velocity constraint:

\[\dot{C}_B = Jv + \frac{\beta}{h} C = 0 \]

Bias factor:

\[0 \leq \beta \leq 1 \]
Baumgarte Stabilization

What is the solution to this?

\[\dot{C} + \frac{\beta}{h}C = 0 \]

First-order differential equation …
Answer

\[C = C_0 \exp \left(-\frac{\beta t}{h} \right) \]
Tuning the Bias Factor

- If your simulation has instabilities, set the bias factor to zero and check the stability.
- Increase the bias factor slowly until the simulation becomes unstable.
- Use half of that value.
Handling Force Limits

First, convert force limits to impulse limits.

\[\lambda_{\text{impulse}} = h \lambda_{\text{force}} \]
Handling Impulse Limits

Clamping corrective impulses:

\[\lambda = \text{clamp}(\lambda, \lambda_{\text{min}}, \lambda_{\text{max}}) \]

Is it really that simple?

Hint: no.
How to Clamp

- Each iteration computes *corrective impulses*.
- Clamping corrective impulses is *wrong*!
- You should clamp the **total impulse** applied over the time step.
- The following example shows why.
Example: 2D Inelastic Collision

A Falling Box

Global Solution

\[P = \frac{1}{2} mv \]
Suppose the corrective impulses are too strong. What should the second iteration look like?
Iterative Solution

To keep the box from bouncing, we need downward corrective impulses.

In other words, the corrective impulses are negative!
Iterative Solution

But clamping the negative corrective impulses wipes them out:

\[\lambda = \text{clamp}(\lambda, 0, \infty) \]

\[= 0 \]

This is one way to introduce jitter into your simulation. ☺
Accumulated Impulses

- For each constraint, keep track of the total impulse applied.
- This is the *accumulated impulse*.
- Clamp the accumulated impulse.
- This allows the corrective impulse to be **negative** yet the accumulated impulse is still positive.
New Clamping Procedure

1. Compute the corrective impulse, but don’t apply it.
2. Make a copy of the old accumulated impulse.
3. Add the corrective impulse to the accumulated impulse.
4. Clamp the accumulated impulse.
5. Compute the change in the accumulated impulse using the copy from step 2.
6. Apply the impulse delta found in Step 5.
Handling Inequality Constraints

- Before iterations, determine if the inequality constraint is active.
- If it is inactive, then ignore it.
- Clamp accumulated impulses:

\[0 \leq \lambda_{acc} \leq \infty \]
Inequality Constraints

A problem:

Aiming for zero overlap leads to JITTER!
Preventing Overshoot

Allow a little bit of penetration (slop).

If separation < slop

\[\dot{\delta} = Jv + \frac{\beta}{h} (\delta - \delta_{slop}) \]

Else

\[\dot{\delta} = Jv \]

Note: the slop will be negative (separation).
Warm Starting

- Iterative solvers use an initial guess for the lambdas.
- So save the lambdas from the previous time step.
- Use the stored lambdas as the initial guess for the new step.
- Benefit: improved stacking.
Step 1.5

- Apply the stored impulses.
- Use the stored impulses to initialize the accumulated impulses.
Step 2.5

- Store the accumulated impulses.
Further Reading & Sample Code

Box2D

- An open source 2D physics engine.
- http://www.box2d.org
- Written in C++.