Dynamic Bounding Volume Hierarchies

Erin Catto, Blizzard Entertainment
This is one of my favorite Overwatch maps: BlizzardWorld. This is the spawn area inside the Hearthstone Tavern.
All the objects in the map, the floors, the walls, the chairs are objects that are enclosed in axis aligned bounding boxes. This is done to accelerate collision detection.
Even the balloons and their strings have separating bounding boxes.
There is almost 9000 separate collision objects in the editor. Green boxes are static objects, blue kinematic, and red dynamic.
Here is a zoomed out view of all the bounding boxes in the map.
Here is the definition of an axis-aligned bounding box that I will use.

```
struct AABB {
    Vec3 lowerBound;
    Vec3 upperBound;
};
```
Given two bounding boxes we can compute the union with min and max operations. These can be made efficient using SIMD.

Notice the cup notation. You will see it again.
Surface area of an AABB

```c
float Area(AABB A)
{
    Vec3 d = A.upperBound - A.lowerBound;
    return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x);
}
```

I will also need to compute the surface area. Notice the SA notation. I will use that as well.
Game worlds often have many objects. Players, rigid bodies, wall, floors, etc.

This is an abstract example of a game world with several geometric objects.
Often in games we need to ray cast against the scene. To shoot a weapon, check visibility, find the ground, etc.
Typically we want the hit point, normal vector, and some way of identifying the object that was hit. Detailed ray cast results are not in the scope of this presentation.

However, I am going to discuss ways to make ray casting faster.
The simplest way to perform the ray cast is to check each object. Brute force can be slow if there are many objects. Sometimes cache friendly is not enough.
Suppose the shapes are complex. Then it might be worth checking whether the ray intersects the AABB before testing the more complex object. Also the AABB test can be faster because we don’t need the hit point or normal. We just need to know if the ray overlaps the AABB.
Here is the algorithm for going over every object, but first testing if the ray overlaps the bounding box. Again, I don’t have time to get into the details of the detailed ray cast or the bounding box overlap test.
We can try grouping some objects together inside larger bounding boxes. Then we can skip whole groups in many cases.
Once you use more than one level of bounding boxes, you might as well make a whole tree. This is a bounding volume hierarchy. Here the bounding volumes are AABBs. Other shapes are possible, such as bounding spheres.
I’m using a binary tree for the BVH. This is efficient and easy to implement.

The tree consists of internal nodes and leaf nodes. The leaf nodes are the collision objects and the internal nodes only exist to accelerate collision queries.

Recall that the number of internal nodes can be computed from the number of leaf nodes, regardless of the tree structure.
The code for the binary tree consists of a node structure and a tree structure. The node has an object index that relates it to the game object it contains.
Here’s an example of ray casting against a binary tree BVH. This code uses a local stack instead of using functional recursion. Children get pushed onto the stack until no more candidates are left.

This is just an example. It leaves out several important optimizations.
The binary tree can take a number of forms, depending on the how the BVH is built. For a BVH the ordering of nodes is not relevant. We can swap left and right children at any level and still have the same BVH.

For example, these two trees are equivalent. This is different than other binary trees, such as Red Black trees, where the order matters.
Dynamic AABB Tree

• Moving objects
• Object creation and destruction
• Streaming
The key algorithm for dynamic bounding volume hierarchies is the algorithm for inserting leaves. So I’m going to spend a lot of time on this. Leaf removal is straightforward and is not covered.
Here is the structure of the insertion algorithm.

```c
void InsertLeaf(Tree tree, int objectIndex, AABB box)
{
    int leafIndex = AllocateLeafNode(tree, objectIndex, box);
    if (tree.nodeCount == 0)
    {
        tree.rootIndex = leafIndex;
        return;
    }

    // Stage 1: find the best sibling for the new leaf
    // Stage 2: create a new parent
    // Stage 3: walk back up the tree refitting AABBs
}
```
// Stage 1: find the best sibling for the new leaf

int bestSibling = 0;
for (int i = 0; i < m_nodeCount; ++i)
{
 bestSibling = PickBest(bestSibling, i);
}

Stage 1 descends the tree, looking for the best option for a sibling. I'll be talking a lot about how to find the best sibling.
Stage 2 deals with all the details of modify the tree after a sibling has been chosen. Edge cases must be handled.
Stage 3 adjusts the AABBs of the new leaf’s ancestors. This is called *refitting*.

```c
// Stage 3: walk back up the tree refitting AABBs
int index = tree.nodes[leafIndex].parentIndex;
while (index != nullIndex)
{
    int child1 = tree.nodes[index].child1;
    int child2 = tree.nodes[index].child2;

    tree.nodes[index].box = Union(tree.nodes[child1].box, tree.nodes[child2].box);
    index = tree.nodes[index].parentIndex;
}
```
Stage 1: Look for best sibling

Here is what a sibling search might look like in Stage 1.
Stage 2: Create new internal node

Stage 2 handles the creation of a new node and hooking the nodes together.
Stage 3: Refit ancestor AABBSs

Stage 3 walks back up the tree and refits the parent bounding boxes.
Picking a good sibling

Goal: faster ray casts
The probability of a ray hitting a convex object is proportional to the surface area.

Surface Area Heuristic (SAH)

The surface area heuristic is a powerful metric that can be used to drive the construction of a BVH. The idea is that the probability of a ray hitting an object is proportional to the surface area of the object.
The probability of a ray hitting a convex object is proportional to the surface area.

We can use this to build good BVHs.
Cost function of a tree

\[C(T) = \sum_{i \in \text{Nodes}} SA(i) \]

```cpp
float ComputeCost(Tree tree) {
    float cost = 0.0f;
    for (int i = 0; i < tree.nodeCount; ++i) {
        cost += Area(tree.nodes[i].box);
    }
    return cost;
}
```

Using the surface area function we can compute a cost metric for any tree.
How shall we compare trees?

We want to a way to compare trees using the surface area heuristic. That way we can see which one is better.
How shall we compare trees?

Many trees can be built from the same set of leaves. The surface area of the leaves is the same and the surface area of the root node is the same. Only the surface area of the internal nodes varies.
How shall we compare trees?

Many trees can be built from the same set of leaves. The surface area of the leaves is the same and the surface area of the root node is the same. Only the surface area of the internal nodes varies.
The cost of a tree is the total surface area of the internal nodes. This gives us an objective way to compare the quality of two trees.
Going back to the earlier example where I inserted L into the tree and created node 11.
SAH gives us a way to compute the cost of inserting L. The cost is the area of the new parent node 11 plus the increased surface area of all the ancestors. This is the surface area added to the tree.
Global search for optimum

Every node in the tree is a potential sibling for leaf node L. Each choice adds a different surface area to the tree.

I would like to find the sibling that adds the least surface area to the tree.
Global search for optimum

Unfortunately it is expensive to evaluate the cost of every potential sibling.
Branch and Bound Algorithm
A faster global search

Branch and bound is a powerful algorithm that makes the global search faster.
Main idea of branch and bound

• Search through tree recursively
• Skip sub-trees that cannot possibly be better
Branch and Bound

Here is an example of how branch and bound works.

Recursion through tree, looking for lowest cost sibling S for L

Use a priority queue Q to explore best candidates first

Initialize:

$S_{\text{best}} = 1$

$C_{\text{best}} = SA(1 \cup L)$

$Q = \{1\}$
Suppose we are exploring this tree, looking for the best sibling. We find our way to node 7 and want to determine if node 7 has the best cost. We also want to determine if it is worthwhile to explore the children of node 7.
The cost of node 7 is the sum of the direct cost and the inherited cost.

The direct cost is the surface area of the new internal node that will be created for the siblings.
The inherited cost is the increased surface area caused by refitting the ancestor’s boxes.
Branch and Bound

If the cost of node 7 is better than the best cost then update the best cost.

Cost for choosing node 7

$C_7 = SA(L \cup 7) + \Delta SA(3) + \Delta SA(1)$

If $C_7 < C_{best}$ then $C_{best} = C_7$
Branch and Bound

Is it worthwhile to explore the sub-tree of node 7?

A lower bound for children of node 7 is the surface area of L plus the inherited cost (including 7).

Consider pushing 8 and 9 onto the queue.

\[C_{\text{low}} = SA(L) + \Delta SA(7) + \Delta SA(3) + \Delta SA(1) \]

lower bound cost for nodes 8 and 9
Branch and Bound

If the lower bound cost for the children is lower than the best cost, then it is worth exploring those sub-trees and they are pushed onto the priority queue.
Otherwise we can prune the whole sub-tree rooted at node 7 from the search. This drastically improves performance.
Object Movement
Object movement strategies

• Refit ancestors
Object movement strategies

• Refit ancestors
 • leads to low quality trees
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
Object movement strategies

• Refit ancestors
 • leads to low quality trees
• Rebuild subtrees
 • expensive (similar to garbage collection)
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
- Remove/re-insert
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
- Remove/re-insert
 - also expensive, but spread out
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
- Remove/re-insert
 - also expensive, but spread out

choose remove/re-insert
Enlarged AABBs

- At 60Hz objects often don’t move far per frame
- So use an enlarged AABB in the BVH
- Only update a leaf if the tight fitting AABB moves outside of the enlarged AABB

There are many schemes for enlarging the AABB. Choose one that works well for your game.
Problem: sorted input

A problem remains. Sorted input can wreck the dynamic tree.
Imagine we have several game objects in a row. They are inserted into the tree in sorted order. We cannot disallow this because this is what the game may need to do.
Sorted input

Here’s how that process looks.
Sorted input
Sorted input

[Diagram of a tree with nodes labeled A, B, C, D, E, F and sorted input A B C D E F]
Sorted input

\[\begin{array}{cccccc}
A & B & C & D & E & F \\
\end{array}\]

\[\begin{array}{cccc}
A & B & C & D \\
\end{array}\]
Sorted input
Sorted input
In this case the incremental SAH fails to provide a good tree. This is nothing new, this was known by the guys who invented the SAH back in 1987 (Goldsmith and Salmon).

To be honest, it is hard to imagine a reasonable cost metric that wouldn’t fail.
Is sorted input an edge case?
Tree rotations

Re-arranging a tree to reduce the SAH cost

Tree rotations are used for AVL trees to keep them balanced. They can also be used for bounding volume hierarchies to reduce the surface area and to mitigate the problems introduced by sorted input.
In the tree on the left, A has four grand children. We can swap B and F to reconfigure the tree.

This is a local operation. Node A may be the child of some other node. Also, D, E, F, and G may have children. This tree rotation does not affect the ancestors of A or the descendants of D, E, F, and G.
Only the surface areas of C differ

Rotate B and F
Which is better?

Rotate B and F
\[SA(C_1) = SA(F \cup G) \] \[SA(C_2) = SA(D \cup E \cup G) \]
Rotate B and F

A

B

C

D

E

F

G

A

C

D

E

F

G

SA(C₂) < SA(C₁)
Four possible rotations

\[
\begin{align*}
B & \leftrightarrow F \\
\begin{array}{c}
A \\
B \quad C
\end{array} & \quad \begin{array}{c}
A \\
D \quad E \quad F \quad G
\end{array} & \quad C \leftrightarrow E \\
B & \leftrightarrow G \\
\begin{array}{c}
A \\
B \quad C
\end{array} & \quad \begin{array}{c}
A \\
D \quad E \quad F \quad G
\end{array} & \quad C \leftrightarrow D
\end{align*}
\]
Now I will show how to use the tree rotation to resolve the sorted input problem.
Sorted input
Sorted input
Sorted input

Can rotate A and C or A and B
Does not reduce the area of node 2
Sorted input

A B C D E F

1
A

2
B

3
C D
Sorted input

\[SA(2) = SA(B \cup C \cup D) \]
Sorted input

\[SA(2) = SA(B \cup A) \]
The rotation operation can be installed in stage 3. It is a local operation that optimizes the tree as the ancestor AABBs are refitted.
References

• J. Goldsmith (1987) - Automatic Creation of Object Hierarchies
• S. Omohundro (1989) - Five Balltree Construction Algorithms
• A. Kensler (2008) - Tree Rotations for Improving Bounding Volume Hierarchies
• J. Bittner (2015) - Incremental BVH Construction for Ray Tracing
• N. Presson, btDbvt, Bullet Physics Engine, 2008
Thanks!

- box2d.org
- github.com/erincatto
- @erin_catto