Hello everyone! Welcome to my talk on dynamic bounding volume hierarchies.
This is one of my favorite Overwatch maps: BlizzardWorld. This is the spawn area inside the Hearthstone Tavern.
All the objects in the map, the floors, the walls, the chairs are objects that are enclosed in axis aligned bounding boxes. This is done to accelerate collision detection.
Even the balloons and their strings have separating bounding boxes.
There are almost 9000 separate collision objects in the editor. Green boxes are static objects, blue kinematic, and red dynamic.
Here is a zoomed out view of all the bounding boxes in the map.
Axis Aligned Bounding Box (AABB)

Here is the definition of an a bounding box that I will use.

```c
struct AABB {
    Vec3 lowerBound;
    Vec3 upperBound;
};
```
Given two bounding boxes we can compute the union with min and max operations. These can be made efficient using SIMD.

Notice the cup notation. You will see it again.
Surface area of an AABB

```c
float Area(AABB A)
{
    Vec3 d = A.upperBound - A.lowerBound;
    return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x);
}
```

I will also need to compute the surface area. Notice the SA notation. I will use that as well.
Game worlds often have many objects. Players, rigid bodies, wall, floors, etc.

This is an abstract example of a game world with several geometric objects.
Often in games we need to ray cast against the scene. To shoot a weapon, check visibility, find the ground, etc.
Typically we want the hit point, normal vector, and some way of identifying the object that was hit. Detailed ray cast results are not in the scope of this presentation.

However, I am going to discuss ways to make ray casting faster.
bool BruteForceRayCast(Vec3 p1, Vec3 p2) {
 for (Object object : objects) {
 bool hit = RayCast(object, p1, p2);
 if (hit) {
 return true;
 }
 }
 return false;
}

The simplest way to perform the ray cast is to check each object. Brute force can be slow if there are many objects. Sometimes cache friendly is not enough.
Suppose the shapes are complex. Then it might be worth checking whether the ray intersects the AABB before testing the more complex object. Also the AABB test can be faster because we don’t need the hit point or normal. We just need to know if the ray overlaps the AABB.
Here is the algorithm for going over every object, but first testing if the ray overlaps the bounding box. Again, I don’t have time to get into the details of the detailed ray cast or the bounding box overlap test.
We can try grouping some objects together inside larger bounding boxes. Then we can skip whole groups in many cases.
Once you use more than one level of bounding boxes, you might as well make a whole tree. This is a bounding volume hierarchy. Here the bounding volumes are AABBs. Other shapes are possible, such as bounding spheres.
I’m using a binary tree for the BVH. This is efficient and easy to implement.

The tree consists of internal nodes and leaf nodes. The leaf nodes are the collision objects and the internal nodes only exist to accelerate collision queries.

Recall that the number of internal nodes can be computed from the number of leaf nodes, regardless of the tree structure.
The code for the binary tree consists of a node structure and a tree structure. The node has an object index that relates it to the game object it contains.
Here’s an example of ray casting against a binary tree BVH. This code uses a local stack instead of using functional recursion. Children get pushed onto the stack until no more candidates are left.

This is just an example. It leaves out several important optimizations.
The binary tree can take a number of forms, depending on how the BVH is built. For a BVH, the ordering of nodes is not relevant. We can swap left and right children at any level and still have the same BVH.

For example, these two trees are equivalent. This is different than other binary trees, such as Red Black trees, where the order matters.
Bounding volume hierarchies can be built automatically using many different algorithms. These can be broadly classified as bottom up, top down, or incremental. Each approach can be useful, depending on the situation.
Bottom Up

(amalgamation)
Start with many loose leaf nodes.
Let’s hide the underlying shapes for clarity.
Merge two AABBs that are close

Combine two of the nodes under a single internal node.

$node_1 = A \cup B$
Now drop A and B from the working set and replace them with box 1.
Combine two more.
Drop H and I from the working set and introduce box 2.
And so on.
And so on.
Keep combining top level nodes.
Keep combining top level nodes.
Each time nodes are combined, there are less top level nodes.
Bottom up gets very fast at the upper levels of the tree.
Until there is only a single top level node. Then the tree is complete.
Now the tree is built.
Top Down
(divide and conquer)
Start with many loose leaf nodes.
Start with many loose leaf nodes.
Wrap all boxes under a single root box. There are too many children, so we need to split them up.
Divide the children to two groups. There are still too many children. We want one object per leaf.
And divide their children into two groups.
And keep dividing until every child has a single object.
Incremental
(dynamic)
An incremental build adds one AABB to the tree at a time.
As objects are added, they are inserted into the tree.
Visually you can start to guess what choices the insertion algorithm should make.
When a leaf is inserted, the code needs to find a sibling for it. The sibling can be a leaf node or an internal node.
And so on …
Dynamic AABB Tree

• Moving objects
• Object creation and destruction
• Streaming
The key algorithm for dynamic bounding volume hierarchies is the algorithm for inserting leaves. So I’m going to spend a lot of time on this. Leaf removal is straightforward and is not covered.
Here is the structure of the insertion algorithm.

```c
void InsertLeaf(Tree tree, int objectIndex, AABB box)
{
    int leafIndex = AllocateLeafNode(tree, objectIndex, box);
    if (tree.nodeCount == 1)
    {
        tree.rootIndex = leafIndex;
        return;
    }

    // Stage 1: find the best sibling for the new leaf
    // Stage 2: create a new parent
    // Stage 3: walk back up the tree refitting AABBs
}
```
// Stage 1: find the best sibling for the new leaf
int bestSibling = 0;
for (int i = 0; i < m_nodeCount; ++i)
{
 bestSibling = PickBest(bestSibling, i);
}

Stage 1 descends the tree, looking for the best option for a sibling. I’ll be talking a lot about how to find the best sibling.
Stage 2 deals with all the details of modify the tree after a sibling has been chosen. Edge cases must be handled.
Stage 3 adjusts the AABBs of the new leaf’s ancestors. This is called **refitting**.
Stage 1: Look for best sibling

Here is what a sibling search might look like in Stage 1.
Stage 2: Create new internal node

Stage 2 handles the creation of a new node and hooking the nodes together.
Stage 3: Refit ancestor AABBS

Stage 3 walks back up the tree and refits the parent bounding boxes.
Building a better tree

- **Bottom Up**
 - merge AABBs with closest centers
 - new node with minimum surface area/volume
- **Top Down**
 - spatial median split
 - minimize volume/area of children
- **Incremental**
 - choose sibling with closest center
 - new node with minimum surface area/volume

Up until now the trees in my examples have been build somewhat arbitrarily. An BVH builder should have rules to yield an efficient tree.

Here are some rules that can be found in practice.
Top Down Example

median split versus surface area

Some choices are better than others. Here is an example of a top down build. I’m going to compare two splitting choices. The median split and a split that tries to minimize surface area.
Here are two possible rules for a top down split.

Which do you think is better?
spatial median split

minimize node surface area
Wrap AABBs around the objects on both sides of the split.
Minimizing surface area creates more empty space. This leads to more early outs for ray casts.
The Surface Area Heuristic
The probability of a ray hitting a convex object is proportional to the surface area.

The surface area heuristic is a powerful metric that can be used to drive the construction of a BVH. The idea is that the probability of a ray hitting an object is proportional to the surface area of the object.
The probability of a ray hitting a convex object is proportional to the surface area.

We can use this to build good BVHs.
Cost function of a tree

\[C(T) = \sum_{i \in \text{Nodes}} SA(i) \]

```c
float ComputeCost(Tree tree)
{
    float cost = 0.0f;
    for (int i = 0; i < tree.nodeCount; ++i)
    {
        cost += Area(tree.nodes[i].box);
    }
    return cost;
}
```

Using the surface area function we can compute a cost metric for any tree.
How shall we compare trees?

We want to a way to compare trees using the surface area heuristic. That way we can see which one is better.
How shall we compare trees?

Many trees can be built from the same set of leaves. The surface area of the leaves is the same and the surface area of the root node is the same. Only the surface area of the internal nodes varies.
How shall we compare trees?

Many trees can be built from the same set of leaves. The surface area of the leaves is the same and the surface area of the root node is the same. Only the surface area of the internal nodes varies.
Revised cost function

\[C(T) = \sum_{i \in \text{Inner Nodes}} SA(i) \]

The cost of a tree is the total surface area of the internal nodes. This gives us an objective way to compare the quality of two trees.

```cpp
float ComputeCost(Tree tree) {
    float cost = 0.0f;
    for (int i = 0; i < tree.nodeCount; ++i) {
        if (tree.nodes[i].isLeaf == false) {
            cost += Area(tree.nodes[i].box);
        }
    }
    return cost;
}
```

Leaf area doesn’t matter
Is the SAH good?

1. Can be applied to top down, bottom up, and incremental
2. Correlates well with ray cast performance
3. Long ray cast performance is crucial
4. Objective metric for comparing trees
Is the SAH good?

1. Can be applied to top down, bottom up, and incremental
2. Correlates well with ray cast performance
3. Long ray cast performance is crucial
4. Objective metric for comparing trees

So yeah, pretty good!
SAH insertion cost

The cost of choosing H as the sibling for L

\[C_H = SA(11) + \Delta SA(10) + \Delta SA(8) + \Delta SA(7) + \Delta SA(3) + \Delta SA(1) \]

\[\Delta SA(node) = SA(node \cup L) - SA(node) \]

Going back to the earlier example where I inserted L into the tree and created node 11.
SAH gives us a way to compute the cost of inserting L. The cost is the area of the new parent node 11 plus the increased surface area of all the ancestors.
This is the surface area added to the tree.
Global search for optimum

Every node in the tree is a potential sibling for leaf node L. Each choice adds a different surface area to the tree.

I would like to find the sibling that adds the least surface area to the tree.
Global search for optimum

Unfortunately it is expensive to evaluate the cost of every potential sibling.
Branch and Bound Algorithm

Optimize the global search

Branch and bound is a powerful algorithm that makes the global search faster.
Main idea of branch and bound

- Search through tree recursively
- Skip sub-trees that cannot possibly be better
Here is an example of how branch and bound works.
Suppose we are exploring this tree, looking for the best sibling. We find our way to node 7 and want to determine if node 7 has the best cost. We also want to determine if it is worthwhile to explore the children of node 7.
The cost of node 7 is the sum of the direct cost and the inherited cost.

The direct cost is the surface area of the new internal node that will be created for the siblings.

The inherited cost is the increased surface area caused by refitting the ancestor’s boxes.
Branch and Bound

If the cost of node 7 is better than the best cost then update the best cost.

Cost for choosing node 7

\[C_7 = SA(L \cup 7) + \Delta SA(3) + \Delta SA(1) \]

If \(C_7 < C_{\text{best}} \) then \(C_{\text{best}} = C_7 \)
Branch and Bound

Is it worthwhile to explore the sub-tree of node 7?

A lower bound for children of node 7 is the surface area of Q plus the inherited cost (including 7).

\[C_{\text{low}} = SA(L) + \Delta SA(7) + \Delta SA(3) + \Delta SA(1) \]

lower bound cost for nodes 8 and 9

Consider pushing 8 and 9 onto the queue
Branch and Bound

If the lower bound cost for the children is lower than the best cost, then it is worth exploring those sub-trees and they are pushed onto the priority queue.
Otherwise we can prune the whole sub-tree rooted at node 7 from the search. This drastically improves performance.
Object Movement
Object movement strategies

• Refit ancestors
Object movement strategies

• Refit ancestors
 • leads to low quality trees
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
- Remove/re-insert
Object movement strategies

- Refit ancestors
 - leads to low quality trees
- Rebuild subtrees
 - expensive (similar to garbage collection)
- Remove/re-insert
 - also expensive, but spread out
Object movement strategies

• Refit ancestors
 • leads to low quality trees
• Rebuild subtrees
 • expensive (similar to garbage collection)
• Remove/re-insert
 • also expensive, but spread out

choose remove/re-insert
Enlarged AABBSs

- At 60Hz objects often don’t move far per frame
- So use an enlarged AABB in the BVH
- Only update a leaf if the tight fitting AABB moves outside of the enlarged AABB

There are many schemes for enlarging the AABB. Choose one that works well for your game.
Problem: sorted input

A problem remains. Sorted input can wreck the dynamic tree.
Imagine we have several game objects in a row. They are inserted into the tree in sorted order. We cannot disallow this because this is what the game may need to do.
Here’s how that process looks.
Sorted input
Sorted input
Sorted input
Sorted input
Sorted input
In this case the incremental SAH fails to provide a good tree. This is nothing new, this was known by the guys who invented the SAH back in 1987 (Goldsmith and Salmon).

To be honest, it is hard to imagine a reasonable cost metric that wouldn’t fail.
Is sorted input an edge case?
Tree rotations
Re-arranging a tree to reduce the SAH cost

Tree rotations are used for AVL trees to keep them balanced. They can also be used for bounding volume hierarchies to reduce the surface area and to mitigate the problems introduced by sorted input.
In the tree on the left, A has four grand children. We can swap B and F to reconfigure the tree.

This is a local operation. Node A may be the child of some other node. Also, D, E, F, and G may have children. This tree rotation does not affect the ancestors of A or the descendants of D, E, F, and G.
Only the surface areas of C differ

Rotate B and F
Which is better?

Rotate B and F

Which is better?
\[SA(C_1) = SA(F \cup G) \]

\[SA(C_2) = SA(D \cup E \cup G) \]

Rotate B and F
Rotate B and F

\[SA(C_2) < SA(C_1) \]
Four possible rotations

\[B \leftrightarrow F\]

\[B \leftrightarrow G\]

\[C \leftrightarrow E\]

\[C \leftrightarrow D\]
Local optimization

Choose rotation that has the lowest surface area
Local optimization

Choose rotation that has the lowest surface area

All surface area changes are local
Now I will show how to use the tree rotation to resolve the sorted input problem.
Sorted input
Sorted input
Sort input

Can rotate A and C or A and B
Does not reduce the area of node 2
Sorted input
Sorted input

$SA(2) = SA(B \cup C \cup D)$
Sorted input

$$SA(2) = SA(B \cup A)$$

Rotate 3 and A
// Stage 3a: walk back up the tree refitting AABBs and applying rotations
int index = tree.nodes[leafIndex].parentIndex;
while (index != nullIndex)
{
 int child1 = tree.nodes[index].child1;
 int child2 = tree.nodes[index].child2;
 tree.nodes[index].box = Union(tree.nodes[child1].box, tree.nodes[child2].box);
 Rotate(index);
 index = tree.nodes[index].parentIndex;
}
References

• J. Goldsmith (1987) - Automatic Creation of Object Hierarchies
• S. Omohundro (1989) - Five Balltree Construction Algorithms
• A. Kensler (2008) - Tree Rotations for Improving Bounding Volume Hierarchies
• J. Bittner (2015) - Incremental BVH Construction for Ray Tracing
• N. Presson, btDbvt, Bullet Physics Engine, 2008
Thanks!

- box2d.org
- github.com/erincatto
- @erin_catto