
Good morning everybody! Thank you for attending my talk today!
My name is Dirk Gregorius and I am a software engineer at Valve.
My talk today will be about robust contact creation for physics simulations.

1

[ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ŀ ǉǳƛŎƪ ƻǳǘƭƛƴŜ ƻŦ ǘƘƛǎ ǘŀƭƪΥ
- After a short introduction we will define what contact points and contact

manifolds are and how to use them to model contact in a physics engine
- We will then define some basic shapes commonly used in physics engines and how

to compute robust and stable contact manifolds between them. This will build the
major part of this talk!

- The method I will show today can produce many contacts points per frame and we
might not want to send all these contact points to the solver due to performance
reasons.

- The ultimate goal is a fast, stable and plausible simulation and I will show you how
to efficiently approximate any number of contact points with a stable manifold.

2

[ŜǘΩǎ ǉǳƛŎƪƭȅ ƭƻƻƪ ŀǘ ǘƘŜ ŀƴŀǘƻƳȅ ƻŦ ŀ ǇƘȅǎƛŎǎ ǘƛŎƪΥ
- We use the broadphase to detect pairs of shape proxies that can potentially be in

contact
- E.g. in an AABB tree we detect all overlapping AABB pairs
- In the narrowphase we then need to test if the actual collision shapes are touching
- If the shapes are touching we create contact information between the two shapes

and send this to the solver
- Finally the solver then advances the rigid bodies and uses the provided contact

information to prevent penetration and to simulate friction

3

The topic of this talk today is a complete breakdown of the narrowphase:
- We will cover how to detect whether the two internal shapes of two overlapping
proxies are actually touching and how to create the contact information between
them that we pass to the solver!

4

[ŜǘΩǎ ƎŜǘ ǎǘŀǊǘŜŘΗ ²Ƙŀǘ ŘƻŜǎ ŎƻƴǘŀŎǘ ŀŎǘǳŀƭƭȅ ƳŜŀƴΚ
- Obviously contact occurs when two shapes are touching!
- Note that the picture above shows a more or less ideal contact situation

5

In reality we will most likely deal with overlap and also need to handle penetration!
- It is actual crucial for a decent physics engine that it can handle penetration

efficiently
- Ideally there should be no performance penalty in the overlapping case and the

rather ideal touching configuration is just a special case with zero penetration

6

We start with some basic definitions. A contact point is defined by:
- A position (indicated by the red dot)
- And a penetration depth (d)

7

Now we can define a contact manifold simply as a set of contact points that share a
common normal!
- Note that I assume here a maximum of four contact points in a manifold
- This is an optimization since four points are usually enough for fast, stable and

robust contact simulation
- I will show you at the end how we can efficiently reduce larger sets of contact

points down to a maximum of four
- tƭŜŀǎŜ ŘƻƴΩǘ ƎŜǘ Ƴƛǎǎ-leaded by the picture here! In 2D two contact points would

be indeed sufficient, but in 3D we need at least four contact points!

The solver usually expects the normal to have a specific orientation. E.g. from A to B
or from B to A. So you need to make sure to create a consistent orientation when
building the manifold!

8

[ŜǘΩǎ ƴƻǿ ǉǳƛŎƪƭȅ ǊŜŎŀǇ Ƙƻǿ ǿŜ ǎƻƭǾŜ ŎƻƴǘŀŎǘ Ǉƻƛƴǘǎ ƛƴ ŀ ǇƘȅǎƛŎǎ ŜƴƎƛƴŜ ǘƻ ōǊƛƴƎ ǳǎ ŀƭƭ
on some common ground here:
- We need to handle contact to prevent penetration and to simulate friction
- In a game physics engine we usually simply solve each contact point individually

using some iterative approach (e.g. Sequential Impulse or Projected Gauss-Seidel)

So what do we do with the contact information?

9

First we compute the relative velocity at the contact point in the direction of the
normal:
- A negative relative velocity means that the two bodies are penetrating
- A positive relative velocity means that the bodies are separating

10

Next we apply equal and opposite impulses in the direction of the normal to drive a
negative relative velocity to zero:
- Obviously our ultimate goal is to resolve all negative (penetrating) velocities as this

will prevent further penetration

11

Finally we also need to resolve the penetration. We have two options here:
- Instead of driving the velocity to zero we can target for a small separating velocity

proportional to the penetration depth per tick (exponential decay)
- This is called Baumgarte stabilization

Alternatively we can run a full solver sweep over the contacts again, but now solving
the position error directly
- This is called position projection

Contact solving is not the topic of the talk today, but hopefully this gives you an idea
how the contact information might be used in the solver.

12

bƻǿ ƭŜǘΩǎ ŎƻƴǘƛƴǳŜ ǿƛǘƘ ǘƘŜ ōŀǎƛŎ ǎǘǊŀǘŜƎƛŜǎ ŦƻǊ ŎǊŜŀǘƛƴƎ ŎƻƴǘŀŎǘ Ǉƻƛƴǘǎ

13

In order to model contact in our engine we need a contact point location, a contact
normal and the penetration depth. There are two basic approaches to find contact
points:
1) The incremental approach tries to find one contact point per frame and adds it to

a persistent manifold.
2) The one-shot approach detects the closest features and finds all contact points of

a manifold in one frame using clipping techniques

14

The basic idea is to inflate your collision shapes by a small margin and then use e.g.
GJK to compute the closest points between the core shapes.
- This gives you the contact point and normal
- The penetration depth is the margin minus the distance between the closest

points
- The new contact point is then added to a persistent manifold
- Old contact points need to be confirmed (e.g. using some distance heuristic or

feature IDs)

hōǾƛƻǳǎƭȅ ǘƘƛǎ ǿƛƭƭ ƻƴƭȅ ǿƻǊƪ ƛŦ ǘƘŜ ŎƻǊŜ ǎƘŀǇŜǎ ŘƻƴΩǘ ƻǾŜǊƭŀǇΦ
If the core shapes are actually overlapping we fallback onto some other algorithm
(e.g. EPA, SAT, MPR, or brute force sampling)

15

[ŜǘΩǎ ƘŀǾŜ ŀ ǉǳƛŎƪ ƭƻƻƪ Ƙƻǿ ǘƘŜ ƛƴŎǊŜƳŜƴǘŀƭ ƳŀƴƛŦƻƭŘ ƛǎ ŎƻƴǎǘǊǳŎǘŜŘ ƻǾŜǊ ǎŜǾŜǊŀƭ
frames now:
- As you can see there are some potential issues with this approach
- Since we only find one contact point at frame 1 we introduce an artificial torque

which can actually be quite noticeable to the player
- Also note that we continue penetrating in the next frame since we need several

frames to construct a stable manifold

16

In the worst case (depending on the geometry of our shapes) objects might even
rotate out of the world!
- If this is a simple debris object this might not matter
- If it is key to reach the level exit it is a AAA bug

17

So what is a stable contact?
- A contact manifold is stable if the center of mass projects inside the manifold.
- Obviously we need (at least!) up to four frames to construct a stable manifold

using the incremental approach
- [ŜǘΩǎ ƭƻƻƪ ƛƴǘƻ ǘƘƛǎ ƛƴ ŀ ōƛǘ ƳƻǊŜ ŘŜǘŀƛƭ

18

We find the first point:
- This is obviously unstable as we can rotate freely around the first contact point

19

Now we find a second point across the diagonal:
- This is still unstable as we can rotate around the axis through the two contact

points across the diagonal
- Think of a hinge here if you like

20

We find a third point which is still unstable as we can still rotate around the axis
through the two contact points across the diagonal
- Note how the center of mass projects onto the edge of the manifold in this case

21

Finally a stable manifold after a minimum of four frames.

22

Summary:
- Incremental manifolds are a great and simply solution.
- Many games have shipped successfully with this approach
- Hopefully this summary helps you to make an educated decision understanding

the limitations of this approach and if this is the right solution for your project!

The remainder of the talk will be about the construction of one-shot manifolds.

23

